|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Каких чисел больше среди всех чисел от 100 до 999: тех, у которых средняя цифра больше обеих крайних, или тех, у которых средняя цифра меньше обеих крайних? На каждом километре шоссе между сёлами Ёлкино и Палкино стоит столб с табличкой, на одной стороне которой написано, сколько километров до Ёлкино, а на другой – до Палкино. Боря заметил, что на каждом столбе сумма всех цифр равна 13. Каково расстояние от Ёлкино до Палкино? На одной стороне острого угла даны точки A и B. Постройте на другой его стороне точку C, из которой отрезок AB виден под наибольшим углом. a1, a2, ..., an — произвольные натуральные числа. Обозначим через bk количество чисел из набора a1, a2, ..., an, удовлетворяющих условию: ai ≥ k. Доказать, что a1 + a2 + ... + an = b1 + b2 + ... |
Страница: 1 [Всего задач: 5]
Доказать, что a1 + a2 + ... + an = b1 + b2 + ...
В таблицу 8×8 вписаны все целые числа от 1 до 64. Доказать, что при этом найдутся два соседних числа, разность между которыми не меньше 5. (Соседними называются числа, стоящие в клетках, имеющих общую сторону.)
Найти множество центров тяжести всех остроугольных треугольников, вписанных в данную окружность.
По аллее длиной 100 метров идут три человека со скоростями 1, 2 и 3 км/ч. Дойдя до конца аллеи, каждый из них поворачивает и идёт назад с той же скоростью. Доказать, что найдётся отрезок времени в 1 минуту, когда все трое будут идти в одном направлении.
Страница: 1 [Всего задач: 5] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|