ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На какое наименьшее число непересекающихся тетраэдров можно разбить куб?

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78525  (#1)

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 10,11

Число N является точным квадратом и не заканчивается нулём. После зачёркивания у этого числа двух последних цифр снова получится точный квадрат. Найти наибольшее число N с таким свойством.
Прислать комментарий     Решение


Задача 78517  (#2)

Темы:   [ Квадратные корни (прочее) ]
[ Уравнения в целых числах ]
[ Итерации ]
Сложность: 4-
Классы: 8,9

Решить в целых числах уравнение   = m.

Прислать комментарий     Решение

Задача 78526  (#3)

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 7,8,9,10

Известно, что при любом целом  K ≠ 27  число  a – K1964  делится без остатка на  27 – K. Найти a.

Прислать комментарий     Решение

Задача 78518  (#4)

Тема:   [ Шестиугольники ]
Сложность: 3+
Классы: 8,9

В шестиугольнике ABCDEF все углы равны. Доказать, что длины сторон такого шестиугольника удовлетворяют соотношениям: a1 - a4 = a5 - a2 = a3 - a6.
Прислать комментарий     Решение


Задача 78527  (#5)

Темы:   [ Разные задачи на разрезания ]
[ Куб ]
Сложность: 4
Классы: 10,11

На какое наименьшее число непересекающихся тетраэдров можно разбить куб?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .