Страница: 1 [Всего задач: 5]
Задача
78600
(#1)
|
|
Сложность: 4 Классы: 8,9,10
|
Существуют ли два таких последовательных натуральных числа, что сумма цифр
каждого из них делится на 125?
Найти наименьшую пару таких чисел или доказать, что их не существует.
Задача
57536
(#2)
|
|
Сложность: 3 Классы: 8,9,10
|
Дан треугольник
ABC. Найдите на прямой
AB точку
M, для которой
сумма радиусов описанных окружностей треугольников
ACM и
BCM
была бы наименьшей.
Задача
78602
(#4)
|
|
Сложность: 2+ Классы: 9,10
|
Для зашифровки телеграфных сообщений требуется разбить всевозможные
десятизначные "слова" – наборы из десяти точек и тире – на две группы
так, чтобы каждые два слова одной группы отличались не менее чем в трёх разрядах. Указать способ такого разбиения или доказать, что его не существует.
Задача
78603
(#3)
|
|
Сложность: 4- Классы: 9,10
|
Дан треугольник ABC. Найти геометрическое место таких точек M, что треугольники ABM и BCM – равнобедренные.
Задача
78604
(#5)
|
|
Сложность: 4- Классы: 9,10
|
Остап Бендер организовал в городе Фуксе раздачу слонов населению. На раздачу
явились 28 членов профсоюза и 37 не членов, причём Остап раздавал слонов
поровну всем членам профсоюза и поровну – не членам. Оказалось, что
существует лишь один способ такой раздачи (так, чтобы раздать всех слонов). Какое наибольшее число слонов могло быть у О. Бендера? (Предполагается, что каждому из пришедших достался хотя бы один слон.)
Страница: 1 [Всего задач: 5]