ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найти все пары целых чисел  (x, y),  удовлетворяющие уравнению   3·2x + 1 = y².

   Решение

Задачи

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 559]      



Задача 30663  (#077)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 9,10

Решить в целых числах уравнение  3m + 7 = 2n.

Прислать комментарий     Решение

Задача 79348  (#078)

Темы:   [ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 8,9,10

Найти все пары целых чисел  (x, y),  удовлетворяющие уравнению   3·2x + 1 = y².

Прислать комментарий     Решение

Задача 30665  (#079)

Темы:   [ Уравнения в целых числах ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

Решить в целых числах уравнение  1/a + 1/b + 1/c = 1.

Прислать комментарий     Решение

Задача 30666  (#080)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9

Решить в целых числах уравнение  x² – y² = 1988.

Прислать комментарий     Решение

Задача 30667  (#081)

Тема:   [ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9

Докажите, что уравнение  1/x1/y = 1/n  имеет единственное решение в натуральных числах тогда и только тогда, когда n – простое число.

Прислать комментарий     Решение

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .