ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В правильном восемнадцатиугольнике A0...A17 проведены диагонали A0Ap+3, Ap+1A18–r и A1Ap+q+3. На стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно. Дан произвольный треугольник ABC и точка X вне его. AM, BN, CQ — медианы треугольника ABC. Доказать, что площадь одного из треугольников XAM, XBN, XCQ равна сумме площадей двух других. Правильный пятиугольник ABCDE со стороной a вписан в
окружность S. Прямые, проходящие через его вершины перпендикулярно
сторонам, образуют правильный пятиугольник со стороной b (см. рис.).
Сторона правильного пятиугольника, описанного около окружности S,
равна c. Докажите, что
a2 + b2 = c2.
Найдите предел Пусть AC – большая из диагоналей параллелограмма ABCD. Из точки C на продолжения сторон AB и AD опущены перпендикуляры CE и CF соответственно. Докажите, что AB·AE + AD·AF = AC². Докажите, что корни уравнения В школе изучают 2n предметов. Все ученики учатся на 4 и 5. Никакие два
ученика не учатся одинаково, ни про каких двух нельзя сказать, что один из них
учится лучше другого. Доказать, что число учеников в школе не больше
X и Y — два выпуклых многоугольника, причём многоугольник X содержится
внутри Y. Пусть S(X) и S(Y) — площади этих многоугольников, а P(X) и
P(Y) — их периметры. Доказать, что
|
Страница: << 1 2 3 4 [Всего задач: 17]
X и Y — два выпуклых многоугольника, причём многоугольник X содержится
внутри Y. Пусть S(X) и S(Y) — площади этих многоугольников, а P(X) и
P(Y) — их периметры. Доказать, что
За круглым столом сидят n человек. Разрешается любых двух людей, сидящих рядом, поменять местами. Какое наименьшее число таких перестановок необходимо сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели бы в обратном порядке?
Страница: << 1 2 3 4 [Всего задач: 17]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке