ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) a, b, c — длины сторон треугольника. Доказать, что a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2) + a2bc + b2ac + c2ab ≥ 0. б) Доказать, что a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2) + a2bc + b2ac + c2ab ≥ 0 для любых неотрицательных a, b, c. Решение |
Страница: 1 [Всего задач: 4]
б) Доказать, что a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2) + a2bc + b2ac + c2ab ≥ 0 для любых неотрицательных a, b, c.
Петя приобрёл в магазине "Машины Тьюринга и другие вычислительные
устройства" микрокалькулятор, который может по любым действительным числам
x и y вычислить xy + x + y + 1 и не имеет других операций. Петя хочет написать "программу" для вычисления многочлена
1 + x + x² + ... + x1982. Под
"программой" он понимает такую последовательность многочленов f1(x), ..., fn(x), что
f1(x) = x и для любого i = 2, ..., n fi(x) – константа или
Найти все такие натуральные n, для которых числа 1/n и 1/n+1 выражаются конечными десятичными дробями.
Внутри правильного шестиугольника находится другой правильный шестиугольник с
вдвое меньшей стороной.
Страница: 1 [Всего задач: 4] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|