ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что из любых 27 различных натуральных чисел, меньших 100, можно выбрать два числа, не являющихся взаимно простыми.

   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 79510

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3
Классы: 9

Доказать, что если  a > b > 0  и  x/a < y/b,  то справедливо неравенство  

Прислать комментарий     Решение

Задача 79517

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10

Найти такие 50 натуральных чисел, что ни одно из них не делится на другое, а произведение каждых двух из них делится на любое из оставшихся чисел.

Прислать комментарий     Решение

Задача 79521

Темы:   [ Правильный (равносторонний) треугольник ]
[ Углы между прямыми и плоскостями ]
[ Проектирование помогает решить задачу ]
Сложность: 3+
Классы: 11

Углы, образованные сторонами правильного треугольника с некоторой плоскостью, равны α, β и γ. Доказать, что одно из чисел sin α, sin β, sin γ равно сумме двух других.
Прислать комментарий     Решение


Задача 79505

Темы:   [ Принцип Дирихле ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

В марте 1987 года учитель решил провести 11 занятий математического кружка. Доказать, что если по субботам и воскресеньям кружок не проводить, то в марте найдутся три дня подряд, в течение которых не будет ни одного занятия кружка.
Прислать комментарий     Решение


Задача 79506

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип Дирихле (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 7,8,9

Доказать, что из любых 27 различных натуральных чисел, меньших 100, можно выбрать два числа, не являющихся взаимно простыми.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .