ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Кружки, факультативы, спецкурсы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
С помощью циркуля и линейки разделите данный треугольник на три равновеликих треугольника прямыми, выходящими из одной вершины.
Назовем натуральное число "замечательным", если оно самое маленькое среди натуральных чисел с такой же, как у него, суммой цифр. Чему равна сумма цифр две тысячи первого замечательного числа? Был очень жаркий день, и четыре пары выпили вместе 44 бутылки кока-колы. Aнна выпила 2, Бетти 3, Кэрол 4 и Дороти 5 бутылок. М-р Браун выпил столько же бутылок, сколько и его жена, но каждый из других мужчин выпил больше, чем его жена: м-р Грин вдвое, м-р Вайт в три раза и м-р Смит в четыре раза. Назовите жён этих мужчин. Расположите в порядке возрастания числа: 2222, 2222, 2222. |
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 644]
На трех гранях куба провели диагонали так, что получился треугольник. Найти углы этого треугольника.
Расположите в порядке возрастания числа: 2222, 2222, 2222.
Доказать, что из любых 2001 целых чисел найдутся два, разность которых делится на 2000.
Доказать, что при любых натуральных m и n число 10m + 1 не делится на 10n − 1.
Доказать, что числа 27x + 4 и 18x + 3 взаимно просты при любом натуральном x.
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 644]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке