ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли в таблице 6*6 расставить числа 0,1,-1 так, чтобы все суммы по вертикалям, горизонталям и двум главным диагоналям были различны.

   Решение

Задачи

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 644]      



Задача 32816

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 7,8

Лена и Ира покупали на рынке виноград. Когда взвешивали Ленину покупку, весы показывали два килограмма, когда Ирину --- то три. Потом они вместе положили свой виноград на весы, и стрелка остановилась на 4,5 кг. Сколько на самом деле весили их покупки?
Прислать комментарий     Решение


Задача 35039

Тема:   [ Раскраски ]
Сложность: 2+
Классы: 7,8,9

Деревянный куб покрасили снаружи белой краской, каждое его ребро разделили на 5 равных частей, после чего куб распилили так, что получились маленькие кубики, у которых ребро в 5 раз меньше, чем у исходного куба. Сколько получилось маленьких кубиков, у которых окрашена хотя бы одна грань?
Прислать комментарий     Решение


Задача 64229

Тема:   [ Лингвистика ]
Сложность: 2+
Классы: 7,8,9

Даны русские слова: люк, яр, ель, лен, лезь. Определите, что получится, если звуки, из которых состоят эти слова, произнести в обратном порядке.
Прислать комментарий     Решение


Задача 79640

Тема:   [ Задачи на проценты и отношения ]
Сложность: 2+
Классы: 7,8

За два года завод снизил объём выпускаемой продукции на 51%. При этом каждый год объём продукции снижался на одно и то же число процентов. На какое?
Прислать комментарий     Решение


Задача 79653

Темы:   [ Принцип Дирихле (прочее) ]
[ Числовые таблицы и их свойства ]
Сложность: 2+
Классы: 7,8

Можно ли в таблице 6*6 расставить числа 0,1,-1 так, чтобы все суммы по вертикалям, горизонталям и двум главным диагоналям были различны.
Прислать комментарий     Решение


Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .