|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Найти наибольшее значение, которое может принимать выражение aek – afh + bfg – bdk + cdh – ceg, если каждое из чисел a, b, c, d, e, f, g, h, k равно ±1. По кругу расставлены 2005 натуральных чисел. |
Страница: 1 2 >> [Всего задач: 6]
Найти хотя бы одно целочисленное решение уравнения a²b² + a² + b² + 1 = 2005.
Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?
Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
По кругу расставлены 2005 натуральных чисел.
Разрежьте круг на несколько равных частей так, чтобы центр круга не лежал на границе хотя бы одной из них.
Страница: 1 2 >> [Всего задач: 6] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|