ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Диагонали выпуклого четырёхугольника ABCD пересекаются в точке O; P и Q — произвольные точки. Докажите, что Даны прямая l, окружность и точки M, N, лежащие
на окружности и не лежащие на прямой l. Рассмотрим
отображение P прямой l на себя, являющееся композицией
проектирования прямой l на данную окружность из точки M
и проектирования окружности на прямую l из точки N.
(Если точка X лежит на прямой l, то P(X) есть пересечение
прямой NY с прямой l, где Y — отличная от M точка
пересечения прямой MX с данной окружностью.) Докажите,
что преобразование P проективно.
Окружности ω1, ω2 с центрами O1, O2 соответственно лежат одна вне другой. На этих окружностях взяты точки C1, C2, лежащие по одну сторону от прямой O1O2. Луч O1C1 пересекает ω2 в точках A2, B2, а луч O2C2 пересекает ω1 в точках A1, B1. Докажите, что ∠A1O1B1=∠A2B2C2 тогда и только тогда, когда C1C2∥O1O2.
Внутри квадрата A1A2A3A4 взята точка P. Из вершины A1 опущен перпендикуляр на A2P, из A2 — перпендикуляр на A3P, из A3 — на A4P, из A4 — на A1P. Докажите, что все четыре перпендикуляра (или их продолжения) пересекается в одной точке.
Докажите, что преобразование P числовой прямой является проективным тогда и только тогда, когда оно представляется в виде
P(x) =
где a, b, c, d — такие числа, что
ad - bcУкажите все пары (x; y), для которых выполняется равенство (x4 + 1)(y4 + 1) = 4x²y². С помощью одного циркуля В клетках шахматной доски записаны в произвольном порядке натуральные числа от 1 до 64 (в каждой клетке записано ровно одно число и каждое число записано ровно один раз). Может ли в ходе шахматной партии сложиться ситуация, когда сумма чисел, записанных в клетках, занятых фигурами, ровно вдвое меньше суммы чисел, записанных в клетках, свободных от фигур? На сторонах треугольника ABC построены правильные треугольники A'BC
и B'AC внешним образом, C'AB — внутренним, M — центр
треугольника C'AB. Докажите, что A'B'M — равнобедренный
треугольник, причем
В треугольнике ABC I – центр вписанной окружности, D – произвольная точка на стороне BC, серединный перпендикуляр к отрезку AD пресекает прямые BI и CI в точках F и E соответственно. Найдите геометрическое место ортоцентров треугольников EIF. Через точку O, лежащую внутри треугольника ABC,
проведены отрезки, параллельные сторонам. Отрезки AA1, BB1
и CC1
разбивают треугольник ABC на четыре треугольника и три
четырехугольника (рис.). Докажите, что сумма площадей треугольников,
прилегающих к вершинам A, B и C, равна площади четвертого
треугольника.
На сторонах произвольного треугольника ABC вне
его построены равнобедренные треугольники A'BC, AB'C
и ABC' с вершинами A', B' и C' и углами К окружности с диаметром АС проведена касательная ВС. Отрезок АВ пересекает окружность в точке D. Через точку D проведена еще одна касательная к окружности, пересекающая отрезок ВС в точке K. В каком отношении точка K разделила отрезок ВС? |
Страница: << 1 2 3 >> [Всего задач: 12]
Найдите все натуральные m и n, для которых m! + 12 = n².
Укажите все пары (x; y), для которых выполняется равенство (x4 + 1)(y4 + 1) = 4x²y².
К окружности с диаметром АС проведена касательная ВС. Отрезок АВ пересекает окружность в точке D. Через точку D проведена еще одна касательная к окружности, пересекающая отрезок ВС в точке K. В каком отношении точка K разделила отрезок ВС?
Трое рабочих копают яму. Они работают по очереди, причём каждый из них работает столько времени, сколько нужно двум другим, чтобы вырыть половину ямы. Работая таким образом, они выкопали яму. Во сколько раз быстрее трое рабочих выкопают такую же яму, если будут работать одновременно?
Найдите все значения а, для которых выражения
а +
Страница: << 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке