ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Попробуйте разменять 25-рублёвую купюру одиннадцатью купюрами достоинством 1, 3 и 5 рублей.

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 644]      



Задача 87988

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
Сложность: 2
Классы: 5,6,7

Девочка заменила каждую букву в своём имени её номером в русском алфавите. Получилось число 2011533. Как её зовут?
Прислать комментарий     Решение


Задача 87998

Темы:   [ Уравнения в целых числах ]
[ Системы линейных уравнений ]
[ Перебор случаев ]
Сложность: 2
Классы: 6,7

Попробуйте разменять 25-рублёвую купюру одиннадцатью купюрами достоинством 1, 3 и 5 рублей.

Прислать комментарий     Решение

Задача 88027

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 2
Классы: 5,6,7

Как вы думаете, среди четырёх последовательных натуральных чисел будет ли хотя бы одно делиться  а) на 2?  б) на 3?  в) на 4?  г) на 5?

Прислать комментарий     Решение

Задача 88059

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 2
Классы: 6,7,8

Незнайка хвастал своими выдающимися способностями умножать числа "в уме". Чтобы его проверить, Знайка предложил ему написать какое-нибудь число, перемножить его цифры и сказать результат. – "1210", – немедленно выпалил Незнайка. – "Ты неправ!" – сказал, подумав, Знайка. Как он обнаружил ошибку, не зная исходного числа?

Прислать комментарий     Решение

Задача 88068

Тема:   [ Взвешивания ]
Сложность: 2
Классы: 5,6,7

Золотоискатель Джек добыл 9 кг золотого песка. Сможет ли он за три взвешивания отмерить 2 кг песка с помощью чашечных весов: а) с двумя гирями  — 200 г и 50 г; б) с одной гирей 200 г?
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .