Страница:
<< 67 68 69 70
71 72 73 >> [Всего задач: 644]
Можно ли расставить на ребрах куба числа от 1 до 12 так, чтобы все суммы чисел на гранях были одинаковыми?
Эта старинная задача была известна еще в Древнем Риме.
Богатый сенатор, умирая, оставил жену в ожидании ребенка. После смерти сенатора выяснилось, что на свое имущество, равное 210 талантам, он составил следующее завещание: «В случае рождения сына отдать мальчику две трети состояния (т. е. 140 талантов), а остальную треть (т.е. 70 талантов) — матери; в случае же рождения дочери отдать девочке одну треть состояния (т. е. 70 талантов), а остальные две трети (т. е. 140 талантов) — матери».
У вдовы сенатора родились близнецы — мальчик и девочка. Такой возможности завещатель не предусмотрел. Как можно разделить имущество между тремя наследниками с наилучшим приближением к условию завещания?
И сказал Кощей Ивану-Царевичу: «Жить тебе до завтра. Утром явишься пред мои очи, задумаю я три цифры —
x,
y,
z. Назовешь ты мне три числа —
a,
b,
c. Выслушаю я тебя и скажу, чему равно
ax+
by+
cz. Не отгадаешь цифры
x,
y,
z — голову с плеч долой». Запечалился Иван-Царевич, пошёл думу думать. Как ему помочь?
|
|
Сложность: 3- Классы: 6,7,8,9
|
Вдоль правой стороны дороги припарковано 100 машин. Среди них — 30 красных, 20 желтых и 20 розовых мерседесов. Известно, что никакие два мерседеса разного цвета не стоят рядом. Докажите, что тогда какие-то три мерседеса, стоящие подряд — одного цвета.
Переливаем молоко. Из восьмилитрового ведра, наполненного молоком, надо отлить 4 литра с помощью пустых трехлитрового и пятилитрового бидонов.
Страница:
<< 67 68 69 70
71 72 73 >> [Всего задач: 644]