Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

В четырёхугольнике длины всех сторон и диагоналей меньше 1 м. Доказать, что его можно поместить в круг радиуса 0,9 м.

Вниз   Решение


Положительные числа a, b, c таковы, что  a² + b² – ab = c².  Докажите, что (a – c)(b – c) ≤ 0.

ВверхВниз   Решение


Автор: Гусаров М.

Есть три кучи камней. Разрешается к любой из них добавить столько камней, сколько есть в двух других кучах, или из любой кучи выбросить столько камней, сколько есть в двух других кучах. Например:  (12, 3, 5)  →  (12, 20, 5)  (или  (4, 3, 5)).  Можно ли, начав с куч 1993, 199 и 19, сделать одну из куч пустой?

ВверхВниз   Решение


Найдите геометрическое место таких точек X, что касательные, проведенные из X к данной окружности, имеют данную длину.

ВверхВниз   Решение


Внутри некоторого тетраэдра взяли произвольную точку X. Через каждую вершину тетраэдра провели прямую, параллельную отрезку, соединяющему X с точкой пересечения медиан противоположной грани. Докажите, что четыре полученные прямые пересекаются в одной точке.

ВверхВниз   Решение


Натуральное число увеличили на 10% и снова получили натуральное число. Могла ли при этом сумма цифр уменьшиться ровно на 10%?

ВверхВниз   Решение


Рассматривается последовательность  1, ½, ⅓, ¼, ⅕, ⅙, 1/7, ...  Существует ли арифметическая прогрессия
  а) длины 5;
  б) сколь угодно большой длины,
составленная из членов этой последовательности?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 97776  (#1)

Темы:   [ Количество и сумма делителей числа ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3-
Классы: 8,9

Автор: Левин М.

Найдите все натуральные числа, делящиеся на 30 и имеющие ровно 30 различных делителей.

Прислать комментарий     Решение

Задача 97777  (#2)

Темы:   [ Геометрические неравенства (прочее) ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

В четырёхугольнике длины всех сторон и диагоналей меньше 1 м. Доказать, что его можно поместить в круг радиуса 0,9 м.

Прислать комментарий     Решение

Задача 97783  (#3)

Темы:   [ Принцип крайнего (прочее) ]
[ Последовательности (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Анджанс А.

Прислать комментарий     Решение


Задача 97779  (#4)

Темы:   [ Связность и разложение на связные компоненты ]
[ Степень вершины ]
[ Обход графов ]
Сложность: 4+
Классы: 9,10,11

Автор: Фольклор

В стране больше 101 города. Столица соединена авиалиниями со 100 городами, а каждый город, кроме столицы, соединён авиалиниями ровно с десятью городами (если A соединён с B, то B соединён с A). Известно, что из каждого города можно попасть в любой другой (может быть, с пересадками). Доказать, что можно закрыть половину авиалиний, идущих из столицы, так, что возможность попасть из каждого города в любой другой сохранится.

Прислать комментарий     Решение

Задача 97780  (#5)

Темы:   [ Арифметическая прогрессия ]
[ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Рассматривается последовательность  1, ½, ⅓, ¼, ⅕, ⅙, 1/7, ...  Существует ли арифметическая прогрессия
  а) длины 5;
  б) сколь угодно большой длины,
составленная из членов этой последовательности?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .