ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Генкин С.А., Итенберг И.В., Фомин Д.В., Ленинградские математические кружки
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На прямой сидят три кузнечика, каждую секунду прыгает один кузнечик. Он
прыгает через какого-нибудь кузнечика (но не через двух сразу). |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 559]
По кругу расставлено девять чисел – четыре единицы и пять нулей. Каждую секунду над числами проделывают следующую операцию: между соседними числами ставят ноль, если они различны, и единицу, если они равны; после этого старые числа стирают.
За круглым столом сидят 25 мальчиков и 25 девочек. Докажите, что у кого-то из сидящих за столом оба соседа – мальчики.
Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.
На прямой сидят три кузнечика, каждую секунду прыгает один кузнечик. Он
прыгает через какого-нибудь кузнечика (но не через двух сразу).
Есть 101 монета, из которых 50 фальшивых, отличающихся по весу на 1 грамм от настоящих. Петя взял одну монету и за одно взвешивание на весах со стрелкой, показывающей разность весов на чашках, хочет определить фальшивая ли она. Сможет ли он это сделать?
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 559] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|