Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Фольклор

а) Даны две одинаковые шестерёнки с 14 зубьями каждая. Их наложили друг на друга так, что зубья совпали (так что проекция на плоскость выглядит как одна шестерёнка). После этого четыре пары совпадающих зубьев выпилили. Всегда ли можно повернуть эти шестерёнки друг относительно друга так, чтобы проекция на плоскость выглядела как одна целая шестерёнка? (Шестерёнки можно поворачивать, но нельзя переворачивать.)

б) Тот же вопрос про две шестерёнки с 13 зубьями, из которых выпилили по 4 зуба.

Вниз   Решение


Автор: Фомин С.В.

Даны 1000 линейных функций:  fk(x) = pkx + qk  (k = 1, 2, ..., 1000).  Нужно найти значение их композиции  f(x) = f1(f2(f3(...f1000(x)...)))  в точке x0. Докажите, что это можно сделать не более чем за 30 стадий, если на каждой стадии можно параллельно выполнять любое число арифметических операций над парами чисел, полученных на предыдущих стадиях, а на первой стадии используются числа  p1, p2, ..., p1000q1, q2, ..., q1000,  x0.

ВверхВниз   Решение


Автор: Фомин С.В.

В кооперативе из 11 человек имеется партячейка. На каждом собрании ячейки происходит либо приём одного члена в партию, либо исключение из партии одного человека. В партячейке не может быть меньше трёх человек. Возвращаться к какому-либо из прежних составов партячейки запрещено уставом. Может ли к какому-то моменту оказаться, что все варианты состава ячейки реализованы?

 

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 97993

Темы:   [ Перестановки и подстановки ]
[ Отношение порядка ]
[ Правило произведения ]
Сложность: 4-
Классы: 8,9,10

Автор: Анджанс А.

Числа 1, 2, 3, ..., N записываются в строчку в таком порядке, что если где-то (не на первом месте) записано число i, то где-то слева от него встретится хотя бы одно из чисел  i + 1  и  i – 1.  Сколькими способами это можно сделать?

Прислать комментарий     Решение

Задача 98002

Темы:   [ Симметричная стратегия ]
[ Центральная симметрия помогает решить задачу ]
[ Индукция (прочее) ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 7,8,9,10

Автор: Назаров Ф.

На некотором поле шахматной доски стоит фишка. Двое по очереди переставляют фишку, при этом на каждом ходу, начиная со второго, расстояние, на которое она перемещается, должно быть строго больше, чем на предыдущем ходу. Проигравшим считается тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре? (Фишка ставится всегда точно в центр каждого поля.)

Прислать комментарий     Решение

Задача 98003

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Осевая и скользящая симметрии (прочее) ]
[ Параллелограммы (прочее) ]
Сложность: 4-
Классы: 8,9

Выпуклые четырёхугольники ABCD и PQRS вырезаны соответственно из бумаги и картона. Будем говорить, что они подходят друг к другу, если выполняются два условия:
    1) картонный четырёхугольник можно наложить на бумажный так, что его вершины попадут на стороны бумажного, по одной вершине на каждую сторону;
    2) если после этого перегнуть четыре образовавшихся маленьких бумажных треугольника на картонный, то они закроют весь картонный четырёхугольник в один слой.
  а) Докажите, что, если четырёхугольники подходят друг к другу, то у бумажного либо две противоположные стороны параллельны,
либо диагонали перпендикулярны.
  б) Докажите, что если ABCD – параллелограмм, то можно сделать подходящий к нему картонный четырёхугольник.

Прислать комментарий     Решение

Задача 98014

Темы:   [ Сочетания и размещения ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9,10

Автор: Фомин С.В.

В кооперативе из 11 человек имеется партячейка. На каждом собрании ячейки происходит либо приём одного члена в партию, либо исключение из партии одного человека. В партячейке не может быть меньше трёх человек. Возвращаться к какому-либо из прежних составов партячейки запрещено уставом. Может ли к какому-то моменту оказаться, что все варианты состава ячейки реализованы?

 
Прислать комментарий     Решение

Задача 98015

Темы:   [ Плоскость, разрезанная прямыми ]
[ Раскраски ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Автор: Фомин Д.

На плоскости дано N прямых  (N > 1),  никакие три из которых не пересекаются в одной точке и никакие две не параллельны. Докажите, что в частях, на которые эти прямые разбивают плоскость, можно расставить ненулевые целые числа, по модулю не превосходящие N, так, что суммы чисел по любую сторону от любой из данных прямых равны нулю.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .