Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Пусть a и n – натуральные числа, большие 1. Докажите, что если число  an + 1  простое, то a чётно и  n = 2k.
(Числа вида  fk = 22k + 1  называются числами Ферма.)

Вниз   Решение


Даны две непересекающиеся окружности с центрами в точках O1 и O2. Пусть a1 и a2 — внутренние касательные к этим окружностям, a3 и a4 — внешние касательные к ним. Пусть, далее, a5 и a6 — касательные к окружности с центром в O1, проведённые из точки O2, a7 и a8 — касательные к окружности с центром в точке O2, проведённые из точки O1. Обозначим через O точку пересечения a1 и a2. Доказать, что с центром в точке O можно провести две окружности так, чтобы первая касалась a3 и a4, вторая касалась a5, a6, a7, a8, причём радиус второй в два раза меньше радиуса первой.

ВверхВниз   Решение


К 17-значному числу прибавили число, записанное теми же цифрами, но в обратном порядке.
Докажите, что хотя бы одна цифра полученной суммы чётна.

ВверхВниз   Решение


Евклидово доказательство бесконечности множества простых чисел наводит на мысль определить рекуррентно числа Евклида:
e1 = 2,  en = e1e2...en–1 + 1  (n ≥ 2).  Все ли числа en являются простыми?

ВверхВниз   Решение


Можно ли множество всех натуральных чисел, больших 1, разбить на два непустых подмножества так, чтобы для каждых двух чисел a и b из одного множества число  ab – 1  принадлежало другому?

ВверхВниз   Решение


Докажите неравенство  pn+1 < p1p2...pn  (pkk-е простое число).

ВверхВниз   Решение


Дан квадрат со стороной 1. Найти геометрическое место точек, сумма расстояний от которых до сторон этого квадрата или их продолжений равна 4.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD нет параллельных сторон. Углы, образованные сторонами четырёхугольника с диагональю AC, равны (в каком-то порядке) 16°, 19°, 55° и 55°. Каким может быть острый угол между диагоналями AC и BD?

ВверхВниз   Решение


Дан 101 прямоугольник с целыми сторонами, не превышающими 100.
Докажите, что среди них найдутся три прямоугольника A, B, C, которые можно поместить друг в друга (так что  ABC).

ВверхВниз   Решение


В таблице из n столбцов и 2n строк, в которых выписаны все возможные различные наборы из n чисел 1 и –1, некоторые числа заменены нулями. Докажите, что можно выбрать некоторое непустое подмножество строк так, что:
  а) сумма всех чисел в выбранных строках равна 0;
  б) сумма всех выбранных строк есть нулевая строка.
(Строки складываются покоординатно как векторы.)

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 [Всего задач: 41]      



Задача 98312

Темы:   [ Числовые таблицы и их свойства ]
[ Теория алгоритмов (прочее) ]
[ Процессы и операции ]
[ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5
Классы: 8,9,10

В таблице из n столбцов и 2n строк, в которых выписаны все возможные различные наборы из n чисел 1 и –1, некоторые числа заменены нулями. Докажите, что можно выбрать некоторое непустое подмножество строк так, что:
  а) сумма всех чисел в выбранных строках равна 0;
  б) сумма всех выбранных строк есть нулевая строка.
(Строки складываются покоординатно как векторы.)

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .