ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Два подобных равнобедренных треугольника имеют общую вершину. Докажите, что проекции их оснований на прямую, соединяющую середины оснований, равны.

Вниз   Решение


Найдите у чисел   а)  (6 + )1999;   б)  (6 + )1999;   в)  (6 + )2000   первые 1000 знаков после запятой.

ВверхВниз   Решение


Король сказал королеве: «Сейчас мне вдвое больше лет, чем было Вам тогда, когда мне было столько лет, сколько Вам теперь. Когда же Вам будет столько лет, сколько мне теперь, нам вместе будет шестьдесят три года». Интересно, сколько лет каждому из них?

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 9]      



Задача 98654  (#11.6)

Тема:   [ Текстовые задачи ]
Сложность: 3
Классы: 6,7

Король сказал королеве: «Сейчас мне вдвое больше лет, чем было Вам тогда, когда мне было столько лет, сколько Вам теперь. Когда же Вам будет столько лет, сколько мне теперь, нам вместе будет шестьдесят три года». Интересно, сколько лет каждому из них?
Прислать комментарий     Решение


Задача 98655  (#11.7)

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Деление с остатком ]
Сложность: 3
Классы: 6,7,8

Среди невиданных зверей, оставивших следы на неведомых дорожках, было стадо одноглавых Тридцатичетырёхножек и трёхголовых Драконов. Всего в стаде 286 ног и 31 голова. Сколько лап у трёхголового Дракона?

Прислать комментарий     Решение

Задача 98656  (#11.8)

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3-
Классы: 6,7

У марсиан бывает произвольное число рук. Однажды все марсиане взялись за руки так, что свободных рук не осталось.
Докажите, что число марсиан, у которых нечётное число рук, чётно.

Прислать комментарий     Решение

Задача 98657  (#11.9)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6

Чему равно выражение (102+112+122+132+142)/365 ?
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .