ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 559]      



Задача 30700  (#014)

Темы:   [ Задачи с ограничениями ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 7,8

Из 12 девушек и 10 юношей выбирают команду, состоящую из пяти человек.
Сколькими способами можно выбрать эту команду так, чтобы в нее вошло не более трёх юношей?

Прислать комментарий     Решение

Задача 30701  (#015)

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно расставить 12 белых и 12 чёрных шашек на чёрных полях шахматной доски?

Прислать комментарий     Решение

Задача 30702  (#016)

Темы:   [ Раскладки и разбиения ]
[ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 7,8

а) Сколькими способами можно разбить 15 человек на три команды по пять человек в каждой?
б) Сколькими способами можно выбрать из 15 человек две команды по пять человек в каждой?

Прислать комментарий     Решение

Задача 30703  (#017)

Темы:   [ Сочетания и размещения ]
[ Классическая комбинаторика (прочее) ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно выбрать из полной колоды (52 карты) 10 карт так, чтобы
  а) среди них был ровно один туз?
  б) среди них был хотя бы один туз?

Прислать комментарий     Решение

Задача 30704  (#018)

Темы:   [ Сочетания и размещения ]
[ Задачи с ограничениями ]
[ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8

Сколько существует шестизначных чисел, у которых по три чётных и нечётных цифры?

Прислать комментарий     Решение

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .