ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 559]      



Задача 30803  (#025)

Тема:   [ Планарные графы. Формула Эйлера ]
Сложность: 4
Классы: 9

Докажите, что в плоском графе есть вершина, степень которой не превосходит 5.

Прислать комментарий     Решение

Задача 30804  (#026)

Темы:   [ Планарные графы. Формула Эйлера ]
[ Сочетания и размещения ]
Сложность: 4
Классы: 9

Каждое ребро полного графа с 11 вершинами покрашено в один из двух цветов: красный или синий.
Докажите, что либо "красный", либо "синий" граф не является плоским.

Прислать комментарий     Решение

Задача 30805  (#027)

Тема:   [ Планарные графы. Формула Эйлера ]
Сложность: 4+
Классы: 9,10

Семиугольник разбит на выпуклые пяти- и шестиугольники, причём так, что каждая его вершина является вершиной по крайней мере двух многоугольников разбиения. Докажите, что число пятиугольников разбиения не меньше 13.

Прислать комментарий     Решение

Задача 30806  (#028)

Темы:   [ Обход графов ]
[ Деревья ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9

Докажите, что связный граф, имеющий не более двух нечётных вершин, можно нарисовать, не отрывая карандаша от бумаги и проводя каждое ребро ровно один раз.

Прислать комментарий     Решение

Задача 30807  (#029)

Темы:   [ Обход графов ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9

Можно ли составить решётку, изображённую на рисунке
  а) из пяти ломаных длины 8?
  б) из восьми ломаных длины 5?
(Длина стороны клетки равна 1.)

Прислать комментарий     Решение

Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .