|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В треугольнике ABC отмечены середины сторон AC и BC – точки M и N соответственно. Угол MAN равен 15°, а угол BAN равен 45°. Числа 1, 2, 3, ..., N записываются в строчку в таком порядке, что если где-то (не на первом месте) записано число i, то где-то слева от него встретится хотя бы одно из чисел i + 1 и i – 1. Сколькими способами это можно сделать? |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]
Сколькими способами можно расположить в девяти лузах семь белых и два чёрных шара? Часть луз может быть пустой, а лузы считаются различными.
Сколькими способами три человека могут разделить между собой шесть одинаковых яблок, один апельсин, одну сливу и один мандарин?
Сколькими способами четыре чёрных шара, четыре белых шара и четыре синих шара можно разложить в шесть различных ящиков?
Общество из n членов выбирает из своего состава одного представителя.
Сколькими способами можно выложить в ряд пять красных, пять синих и пять зелёных шаров так, чтобы никакие два синих шара не лежали рядом?
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|