|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан угол AOB. С помощью прямого угла постройте: а) угол, вдвое больший угла AOB; б) угол, вдвое меньший угла AOB. Пусть $p$ и $q$ – взаимно простые натуральные числа. Лягушка прыгает по числовой прямой, начиная в точке $0$, каждый раз либо на $p$ вправо, либо на $q$ влево. Однажды лягушка вернулась в $0$. Докажите, что для любого натурального $d < p + q$ найдутся два числа, посещенные лягушкой и отличающиеся на $d$. Через точку P, лежащую на медиане CC1 треугольника ABC, проведены прямые AA1 и BB1 (точки A1 и B1 лежат на сторонах BC и CA соответственно). |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 83]
Докажите, что при a, b, c > 0 имеет место неравенство
Докажите, что при a, b, c > 0 имеет место неравенство ab/c + ac/b + bc/a ≥ a + b + c.
Докажите, что при a, b, c > 0 имеет место неравенство
Докажите, что при a, b, c ≥ 0 имеет место неравенство (ab + bc + ca)² ≥ 3abc(a + b + c).
Сумма трёх положительных чисел равна 6. Докажите, что сумма их квадратов не меньше 12.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 83] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|