ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 100]      



Задача 57479  (#10.068)

Тема:   [ Отрезок внутри треугольника меньше наибольшей стороны ]
Сложность: 5
Классы: 8

Даны треугольник ABC со сторонами a > b > c и произвольная точка O внутри его. Пусть прямые  AO, BO, CO пересекают стороны треугольника в точках P, Q, R. Докажите, что  OP + OQ + OR < a.
Прислать комментарий     Решение


Задача 57480  (#10.069)

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 2
Классы: 8

ABC - прямоугольный треугольник с прямым углом C. Докажите, что  cn > an + bn при n > 2.
Прислать комментарий     Решение


Задача 57481  (#10.070)

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 3
Классы: 8

ABC - прямоугольный треугольник с прямым углом C. Докажите, что a + b < c + hc.
Прислать комментарий     Решение


Задача 57482  (#10.071)

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4+
Классы: 8

Докажите, что для прямоугольного треугольника 0, 4 < r/h < 0, 5, где h — высота, опущенная из вершины прямого угла.
Прислать комментарий     Решение


Задача 57483  (#10.072)

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4+
Классы: 8

ABC - прямоугольный треугольник с прямым углом C. Докажите, что  c/r $ \geq$ 2(1 + $ \sqrt{2}$).
Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .