ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Пастор А.

В некотором государстве было 2002 города, соединённых дорогами так, что если запретить проезд через любой из городов, то из каждого из оставшихся городов можно добраться до любого другого. Каждый год король выбирает некоторый несамопересекающийся циклический маршрут и приказывает построить новый город, соединить его дорогами со всеми городами выбранного маршрута, а все дороги этого маршрута закрыть за ненадобностью. Через несколько лет в стране не осталось ни одного несамопересекающегося циклического маршрута, проходящего по ее городам. Докажите, что в этот момент количество городов, из которых выходит ровно одна дорога, не меньше 2002.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 58299  (#26.016)

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Рациональные и иррациональные числа ]
Сложность: 4+
Классы: 8,9

Пусть n$ \ge$3. Существуют ли n точек, не лежащих на одной прямой, попарные расстояния между которыми иррациональны, а площади всех треугольников с вершинами в них рациональны?
Прислать комментарий     Решение


Задача 58300  (#26.017)

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Рациональные и иррациональные числа ]
Сложность: 4+
Классы: 8,9

Существуют ли на плоскости три такие точки A, B и C, что для любой точки X длина хотя бы одного из отрезков XA, XB и XC иррациональна?
Прислать комментарий     Решение


Задача 58301  (#26.018)

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 5
Классы: 8,9

В остроугольном треугольнике ABC проведены медиана AM, биссектриса BK и высота CH. Может ли площадь треугольника, образованного точками пересечения этих отрезков, быть больше 0, 499SABC?
Прислать комментарий     Решение


Задача 58302  (#26.019)

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 5
Классы: 8,9

На бесконечном листе клетчатой бумаги (размер клетки 1×1) укладываются кости домино размером 1×2 так, что они накрывают все клетки. Можно ли при этом добиться того, чтобы любая прямая, идущая по линиям сетки, разрезала лишь конечное число костей?
Прислать комментарий     Решение


Задача 58303  (#26.020)

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 5
Классы: 8,9

Может ли конечный набор точек содержать для каждой своей точки ровно 100 точек, удаленных от нее на расстояние 1?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .