ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 100]      



Задача 61483  (#11.056)

Темы:   [ Линейные рекуррентные соотношения ]
[ Тригонометрия (прочее) ]
Сложность: 3+
Классы: 9,10,11

Пусть характеристическое уравнение (11.3 ) последовательности (11.2) имеет комплексные корни x1, 2 = a±ib = re±i$\scriptstyle \varphi$. Докажите, что для некоторой пары чисел c1, c2 будет выполняться равенство

an = rn(c1cos n$\displaystyle \varphi$ + c2sin n$\displaystyle \varphi$).


Прислать комментарий     Решение

Задача 61484  (#11.057)

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Найдите формулу n-го члена для последовательностей, заданных условиями ( n $ \geqslant$ 0):

a) a0 = 0, a1 = 1, an + 2 = 4an + 1 - 5an;
б) a0 = 1, a1 = 2, an + 2 = 2an + 1 - 2an;
в) a0 = 1, a1 = 2, an + 2 + an + 1 + an = 0;
г) a0 = 1, a1 = 8, an + 2 = 6an + 1 + 25an.

Прислать комментарий     Решение

Задача 61485  (#11.058)

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Каким линейным рекуррентным соотношениям удовлетворяют последовательности

a) an = n2;        б) an = n3?

Прислать комментарий     Решение

Задача 61486  (#11.059)

Темы:   [ Квадратные корни (прочее) ]
[ Предел последовательности, сходимость ]
Сложность: 4+
Классы: 10,11

Пусть (1 + $ \sqrt{2}$ + $ \sqrt{3}$)n = pn + qn$ \sqrt{2}$ + rn$ \sqrt{3}$ + sn$ \sqrt{6}$ (n $ \geqslant$ 0). Найдите:

а) $ \lim\limits_{n\to
\infty}^{}$$ {\dfrac{p_n}{q_n}}$;     б) $ \lim\limits_{n\to
\infty}^{}$$ {\dfrac{p_n}{r_n}}$;     в) $ \lim\limits_{n\to
\infty}^{}$$ {\dfrac{p_n}{s_n}}$.

Прислать комментарий     Решение

Задача 61487  (#11.060)

Тема:   [ Формальные степенные ряды ]
Сложность: 3
Классы: 8,9,10,11

Найдите произведения следующих формальных степенных рядов:

а) (1 + x + x2 + x3 +...)(1 - x + x2 - x3 +...);
б) (1 + x + x2 + x3 +...)2;
в) $ \left(\vphantom{1+x+\dfrac{x^2}{2!}+\ldots+\dfrac{x^n}{n!}+\ldots}\right.$1 + x + $ {\dfrac{x^2}{2!}}$ +...+ $ {\dfrac{x^n}{n!}}$ +...$ \left.\vphantom{1+x+\dfrac{x^2}{2!}+\ldots+\dfrac{x^n}{n!}+\ldots}\right)$$ \left(\vphantom{1-x+\dfrac{x^2}{2!}-\ldots+\dfrac{(-x)^n}{n!}+\ldots}\right.$1 - x + $ {\dfrac{x^2}{2!}}$ -...+ $ {\dfrac{(-x)^n}{n!}}$ +...$ \left.\vphantom{1-x+\dfrac{x^2}{2!}-\ldots+\dfrac{(-x)^n}{n!}+\ldots}\right)$.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .