Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В волейбольном турнире с участием 73 команд каждая команда сыграла с каждой по одному разу. В конце турнира все команды разделили на две непустые группы так, что каждая команда первой группы одержала ровно n побед, а каждая команда второй группы – ровно m побед. Могло ли оказаться, что  mn?

Вниз   Решение


Три натуральных числа таковы, что последняя цифра суммы любых двух из них является последней цифрой третьего числа. Произведение этих трёх чисел записали на доске, а затем всё, кроме трёх последних цифр этого произведения, стёрли. Какие три цифры могли остаться на доске?

ВверхВниз   Решение


Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше?

ВверхВниз   Решение


На стороне AB выпуклого четырёхугольника ABCD взяты точки K и L (точкаK лежит между A и L), а на стороне CD взяты точки M и N (точка M между C и N). Известно, что  AK = KN = DN  и  BL = BC = CM.  Докажите, что если BCNK – вписанный четырёхугольник, то и ADML тоже вписан.

ВверхВниз   Решение


Существуют ли такие 99 последовательных натуральных чисел, что наименьшее из них делится на 100, следующее делится на 99, третье делится на 98, ..., последнее делится на 2?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 [Всего задач: 18]      



Задача 32074  (#16)

Темы:   [ Произведения и факториалы ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10

Докажите, что произведение ста последовательных натуральных чисел не может быть сотой степенью натурального числа.

Прислать комментарий     Решение

Задача 32075  (#17)

Темы:   [ Разные задачи на разрезания ]
[ Принцип Дирихле (площадь и объем) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3+
Классы: 7,8,9

Из шахматной доски вырезали одну угловую клетку. На какое наименьшее число равновеликих треугольников можно разрезать эту фигуру?

Прислать комментарий     Решение

Задача 32076  (#18)

Темы:   [ Площадь треугольника не превосходит половины произведения двух сторон ]
[ Симметрия помогает решить задачу ]
[ Неравенства с площадями ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 8,9,10

a, b, c, d – стороны четырёхугольника (в любом порядке), S – его площадь. Докажите, что  S ≤ ½ (ab + cd).

Прислать комментарий     Решение

Страница: << 1 2 3 4 [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .