Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Марина купила тур в Банановую страну с 5 по 22 октября. Ввозить и вывозить бананы через границу запрещено. Банановый король в начале каждого месяца издаёт указ о ценах. Цена одного банана в местной валюте на нужные числа октября приведена в таблице:

$\,$5 $\,$6 $\,$7 $\,$8 $\,$9 10 11 12 13 14 15 16 17 18 19 20 21 22
8,1 $\,$8 $\,$7 8,1 $\,$9 $\,$8 8,1 7,2 $\,$7 $\,$8 $\,$9 8,1 $\,$9 $\,$8 $\,$9 8,2 $\,$7 7,1

Марина хочет ежедневно съедать по одному банану. Она любит только зелёные бананы, поэтому согласна съесть банан только в течение 4 дней после покупки. Например, банан, купленный 5 октября, Марина согласна съесть 5, 6, 7 или 8 октября. Марина может запасаться бананами, когда они подешевле.

В какие дни по сколько бананов надо покупать Марине, чтобы потратить как можно меньше денег?

Вниз   Решение


Автор: Ивлев Б.М.

Для любого натурального числа n существует составленное из цифр 1 и 2 число, делящееся на 2n. Докажите это.
(Например, на 2 делится 2, на 4 делится 12, на 8 делится 112, на 16 делится 2112...)

ВверхВниз   Решение


На прямой дано 50 отрезков. Докажите, что верно хотя бы одно из следующих утверждений:

  • некоторые 8 из этих отрезков имеют общую точку;
  • некоторые 8 из этих отрезков таковы, что никакие два из них не пересекаются.

ВверхВниз   Решение


Автор: Ивлев Б.М.

В куче $n$ камней, играют двое. За ход можно взять из кучи количество камней, либо равное простому делителю текущего числа камней в куче, либо равное 1. Выигрывает взявший последний камень. При каких $n$ начинающий может играть так, чтобы всегда выигрывать, как бы ни играл его соперник?

ВверхВниз   Решение


Доказать, что у всякого выпуклого многогранника найдутся две грани с одинаковым числом сторон.

ВверхВниз   Решение


Автор: Ивлев Б.М.

В клетках квадратной таблицы 4×4 расставлены знаки  +  и  – ,   как показано на рисунке.

Разрешается одновременно менять знак во всех клетках, расположенных в одной строке, в одном столбце или на прямой, параллельной какой-нибудь диагонали (в частности, можно менять знак в любой угловой клетке). Докажите, что, сколько бы мы ни производили таких перемен знака, нам не удастся получить таблицу из одних плюсов.

ВверхВниз   Решение


Автор: Гришин А.

Имеется 20 бусинок десяти цветов, по две бусинки каждого цвета. Их как-то разложили в 10 коробок. Известно, что можно выбрать по бусинке из каждой коробки так, что все цвета будут представлены. Докажите, что число способов такого выбора есть ненулевая степень двойки.

ВверхВниз   Решение


Автор: Ильясов С.

В треугольник ABC вписана окружность ω с центром в точке I. Около треугольника AIB описана окружность Г. Окружности ω и Г пересекаются в точках X и Y. Общие касательные к окружностям ω и Г пересекаются в точке Z. Докажите, что описанные окружности треугольников ABC и XYZ, касаются.

ВверхВниз   Решение


В лаборатории на полке стоят 120 внешне неразличимых пробирок, в 118 из которых находится нейтральное вещество, в одной – яд и в одной – противоядие. Пробирки случайно перемешались, и нужно найти пробирку с ядом и пробирку с противоядием. Для этого можно воспользоваться услугами внешней тестирующей лаборатории, в которую одновременно отправляют несколько смесей жидкостей из любого числа пробирок (по одной капле из пробирки), и для каждой смеси лаборатория сообщит результат: $+1$, если в смеси есть яд и нет противоядия; $-1$, если в смеси есть противоядие, но нет яда; 0 в остальных случаях. Можно ли, подготовив 19 таких смесей и послав их в лабораторию единой посылкой, по сообщенным результатам гарантированно определить, в какой пробирке яд, а в какой противоядие?

ВверхВниз   Решение


По кругу расставлены 2005 натуральных чисел.
Доказать, что найдутся два соседних числа, после выкидывания которых оставшиеся числа нельзя разбить на две группы с равной суммой.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 18]      



Задача 32069  (#11)

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Выход в пространство ]
Сложность: 3
Классы: 5,6,7,8,9

Отметьте несколько точек и несколько прямых так, чтобы на каждой прямой лежало ровно три отмеченные точки и через каждую точку проходило ровно три отмеченные прямые.

Прислать комментарий     Решение


Задача 32070  (#12)

Темы:   [ Обратный ход ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 7,8,9

Точку внутри квадрата соединили с вершинами – получились четыре треугольника, один из которых равнобедренный с углами при основании (стороне квадрата) 15°. Докажите, что противоположный ему треугольник правильный.

Прислать комментарий     Решение

Задача 32071  (#13)

Темы:   [ Шестиугольники ]
[ Правильный (равносторонний) треугольник ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 7,8,9

a1, a2, a3, a4, a5, a6 – последовательные стороны шестиугольника, все углы которого равны. Докажите, что  a1a4 = a3a6 = a5a2.

Прислать комментарий     Решение

Задача 32072  (#14)

Темы:   [ Шахматная раскраска ]
[ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 8,9

"Крокодилом" называется фигура, ход которой заключается в прыжке на клетку, в которую можно попасть сдвигом на одну клетку по вертикали или горизонтали, а затем на N клеток в перпендикулярном направлении (при  N = 2  "крокодил" – это шахматный конь).
При каких N "крокодил" может пройти с каждой клетки бесконечной шахматной доски на любую другую?

Прислать комментарий     Решение

Задача 76432  (#15)

Темы:   [ Комбинаторика орбит ]
[ Раскраски ]
[ Правило произведения ]
[ Правильные многогранники (прочее) ]
[ Куб ]
Сложность: 3+
Классы: 10,11

  а) Выбраны 6 различных цветов; требуется раскрасить 6 граней куба, каждую в особый цвет из числа избранных. Сколькими геометрически различными способами можно это сделать? Геометрически различными называются две такие расцветки, которые нельзя совместить одну с другой при помощи вращений куба вокруг его центра.
  б) Решить ту же задачу для случая раскраски граней додекаэдра в 12 различных цветов.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .