Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 188]
|
|
Сложность: 3- Классы: 7,8,9
|
Очень скучно смотреть на черно-белый циферблат, поэтому Клайв ровно в полдень закрасил число 12 красным цветом и решил через каждые 57 часов закрашивать текущий час в красный цвет.
а) Сколько чисел на циферблате окажутся покрашенными?
б) Сколько окажется красных чисел, если Клайв будет красить
их каждый 2005-й час?
Можно ли найти 57 различных двузначных чисел, чтобы сумма никаких
двух из них не равнялась 100?
а) Какое наибольшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно незакрашенное поле?
б) Какое наименьшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно чёрное поле?
На доске написаны числа 1, 2, 3, ..., 1984, 1985. Разрешается стереть с доски любые два числа и вместо них записать модуль их разности. В конце концов на доске останется одно число. Может ли оно равняться нулю?
|
|
Сложность: 3 Классы: 7,8,9
|
Двое лыжников шли с постоянной скоростью 6 км/ч на расстоянии 200 метров друг от друга. Потом они стали подниматься в большую горку, и скорость упала до 4 км/ч. Потом оба лыжника съехали с горки со скоростью 7 км/ч и попали в глубокий снег, где их скорость стала всего 3 км/ч.
Каким стало расстояние между ними?
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 188]