ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 32784  (#01)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 7,8

Какое самое большое число ладей можно поставить на шахматную доску 8 на 8 так, чтобы они не били друг друга?
Прислать комментарий     Решение


Задача 32785  (#02)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 7,8

Занятия Вечерней Математической Школы проходят в девяти аудиториях. Среди прочих, на эти занятия приходят 19 учеников из одной и той же школы.
  а) Докажите, что как их не пересаживай, хотя бы в одной аудитории окажется не меньше трех таких школьников.
  б) Верно ли, что в какой-нибудь аудитории обязательно окажется ровно три таких школьника?
Прислать комментарий     Решение


Задача 32786  (#03)

Тема:   [ Принцип Дирихле (углы и длины) ]
Сложность: 2+
Классы: 7,8

На плоскости нарисовано 12 прямых, проходящих через точку О. Докажите, что можно выбрать две из них так, что угол между ними будет меньше 17 градусов.
Прислать комментарий     Решение


Задача 32787  (#04)

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8

Можно ли найти 57 различных двузначных чисел, чтобы сумма никаких двух из них не равнялась 100?
Прислать комментарий     Решение


Задача 32788  (#05)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 7,8,9

На поле 10 на 10 для игры в "Морской Бой" стоит один четырехпалубный корабль. Какое минимальное число выстрелов надо произвести, чтобы наверняка его ранить?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .