ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выпуски:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 73668  (#М133)

Тема:   [ Формула Эйлера. Эйлерова характеристика ]
Сложность: 5
Классы: 10,11

Автор: Маресин В.

Один из простейших многоклеточных организмов — водоросль вольвокс — представляет собой сферическую оболочку, сложенную, в основном, семиугольными, шестиугольными и пятиугольными клетками (то есть клетками, имеющими семь, шесть или пять соседних; в каждой «вершине» сходятся три клетки). Бывают экземпляры, у которых есть и четырёхугольные, и восьмиугольные клетки, но биологи заметили, что если таких «нестандартных» клеток (менее чем с пятью и более чем с семью сторонами) нет, то пятиугольных клеток на 12 больше, чем семиугольных (всего клеток может быть несколько сотен и даже тысяч). Не можете ли вы объяснить этот факт?
Прислать комментарий     Решение


Задача 73669  (#М134)

Темы:   [ Основные свойства центра масс ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Теорема о группировке масс ]
[ ГМТ с ненулевой площадью ]
Сложность: 5
Классы: 9,10,11

Автор: Л.Г.Макаров

Какое множество точек заполняют центры тяжести треугольников, три вершины которых лежат соответственно на трёх сторонах АВ, ВС и АС данного треугольника АВС?
Прислать комментарий     Решение


Задача 73670  (#М135)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Многочлен n-й степени имеет не более n корней ]
[ Тригонометрическая форма. Формула Муавра ]
Сложность: 5-
Классы: 10,11

Автор: Маресин В.

Для каждого натурального  n > 1  существует такое число cn, что для любого x произведение синуса числа x, синуса числа  x + π/n,  синуса числа
x + /n,  ..., наконец, синуса числа  x + (n – 1)π/n  равно произведению числа cn на синус числа nx. Докажите это и найдите величину cn.

Прислать комментарий     Решение

Задача 73671  (#М136)

Темы:   [ Арифметическая прогрессия ]
[ Взвешивания ]
[ Текстовые задачи (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Можно ли увезти из каменоломни 50 камней, массы которых  370 кг, 372 кг, 374 кг, ..., 468 кг  (арифметическая прогрессия с разностью 2 кг), на семи трёхтонках?

Прислать комментарий     Решение

Задача 73672  (#М137)

Темы:   [ Площадь треугольника не превосходит половины произведения двух сторон ]
[ Перегруппировка площадей ]
[ Симметрия помогает решить задачу ]
[ Теорема Птолемея ]
[ Неравенства с площадями ]
[ Площадь четырехугольника ]
Сложность: 5+
Классы: 8,9,10

Пусть a, b, c, d длины четырёх последовательных сторон четырёхугольника, S его площадь. Докажите неравенства:

а) S ab + cd;

б) S ac + bd.

в) Докажите, что если хотя бы в одном из этих неравенств достигается равенство, то четырёхугольник можно вписать в окружность.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .