ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 76541  (#1)

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3+
Классы: 8,9,10

В каком из выражений:  (1 – x² + x³)1000,   (1 + x² – x³)1000  после раскрытия скобок и приведения подобных членов больший коэффициент при x20?
Прислать комментарий     Решение


Задача 76542  (#2)

Темы:   [ Приближения чисел ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 10,11

Вычислить с пятью десятичными знаками (то есть с точностью до 0,00001) произведение:  

Прислать комментарий     Решение

Задача 76543  (#3)

Темы:   [ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что каково бы ни было целое число n, среди чисел n,  n + 1,  n + 2,  ...,  n + 9  есть хотя бы одно, взаимно простое с остальными девятью.

Прислать комментарий     Решение

Задача 76539  (#4)

Темы:   [ Разрезания (прочее) ]
[ Пятиугольники ]
Сложность: 4
Классы: 8,9

Дан выпуклый пятиугольник ABCDE. Сторонами, противоположными вершинам A, B, C, D, E, мы называем соответственно отрезки CD, DE, EA, AB, BC. Докажите, что если произвольную точку M, лежащую внутри пятиугольника, соединить прямыми со всеми его вершинами, то из этих прямых либо ровно одна, либо ровно три, либо ровно пять пересекают стороны пятиугольника, противоположные вершинам, через которые они проходят.
Прислать комментарий     Решение


Задача 76544  (#5)

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Скрещивающиеся прямые и ГМТ ]
[ Цилиндр ]
Сложность: 3+
Классы: 10,11

Найти все прямые в пространстве, проходящие через данную точку M на данном расстоянии d от данной прямой AB.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .