ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 77933

Темы:   [ Неравенства с площадями ]
[ Площадь и ортогональная проекция ]
Сложность: 3+
Классы: 10,11

Все рёбра треугольной пирамиды равны a. Найти наибольшую площадь, которую может иметь ортогональная проекция этой пирамиды на плоскость.
Прислать комментарий     Решение


Задача 77934

Темы:   [ НОД и НОК. Взаимная простота ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4
Классы: 10,11

Имеется несколько чисел, каждое из которых меньше чем 1951. Общее наименьшее кратное любых двух из них больше чем 1951.
Доказать, что сумма обратных величин этих чисел меньше 2.

Прислать комментарий     Решение

Задача 77936

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 10,11

Окружность обладает тем свойством, что внутри неё можно двигать правильный треугольник так, чтобы каждая вершина треугольника описывала эту окружность. Найти замкнутую несамопересекающуюся кривую, отличную от окружности, внутри которой также можно двигать правильный треугольник так, чтобы каждая его вершина описывала эту кривую.
Прислать комментарий     Решение


Задача 77935

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле ]
Сложность: 5
Классы: 10,11

Автобусный маршрут содержит 14 остановок (считая две конечные). В автобусе одновременно могут ехать не более 25 пассажиров. Доказать, что во время поездки автобуса из одного конца в другой
  a) найдутся восемь таких различных остановок A1, B1, A2, B2, A3, B3, A4, B4, что ни один пассажир не едет от A1 до B1, ни один пассажир не едет от A2 до B2, ни один пассажир не едет от A3 до B3 и ни один пассажир не едет от A4 до B4;

  б) может оказаться, что пассажиры едут таким образом, что не существует десяти различных остановок A1, B1, A2, B2, A3, B3, A4, B4, A5, B5, которые обладали бы аналогичными свойствами.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .