ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 78616  (#1)

Темы:   [ Десятичная система счисления ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Доказать, что существует число q такое, что в десятичной записи числа q . 21000 нет ни одного нуля.
Прислать комментарий     Решение


Задача 78619  (#2)

Темы:   [ Количество и сумма делителей числа ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Уравнения в целых числах ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Обозначим через d(N) число делителей N (числа 1 и N также считаются делителями). Найти все такие N, что число  P =   – простое.

Прислать комментарий     Решение

Задача 78620  (#3)

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 9,10

На каждой стороне прямоугольного треугольника построено по квадрату (пифагоровы штаны), и вся фигура вписана в круг. Для каких прямоугольных треугольников это можно сделать?
Прислать комментарий     Решение


Задача 78622  (#5)

Тема:   [ Подсчет двумя способами ]
Сложность: 3+
Классы: 9,10

Семь школьников решили за воскресенье обойти семь кинотеатров. Во всех них сеансы начинаются в 9.00, 10.40, 12.20, 14.00, 15.40, 17.20, 19.00 и 20.40 (8 сеансов). На каждый сеанс шестеро шли вместе, а кто-нибудь один (не обязательно один и тот же) шел в другой кинотеатр. К вечеру каждый побывал в каждом кинотеатре. Докажите, что в каждом кинотеатре был сеанс, на котором не был ни один из этих школьников.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .