Страница:
<< 1 2 3
4 >> [Всего задач: 16]
Доказать, что любое число 2n, где n = 3, 4, 5, ... можно представить в виде 7x² + y², где x и y – нечётные числа.
В магазин привезли цистерну молока. У продавца имеются чашечные весы без гирь
(на чашки весов можно ставить фляги), а также три одинаковые фляги, две из
которых пустые, а в третьей налит 1 л молока. Как отлить в одну флягу ровно 85
л молока, сделав не более восьми взвешиваний?
|
|
Сложность: 4 Классы: 8,9,10
|
В некоторой стране 1985 аэродромов. С каждого из них вылетел самолёт и
приземлился на самом удалённом от места старта аэродроме. Могло ли случиться,
что в результате все 1985 самолётов оказались на 50 аэродромах? (Землю можно
считать плоской, а маршруты прямыми; попарные расстояния между аэродромами предполагаются различными.)
Назовём "сложностью" данного числа наименьшую длину числовой
последовательности (если такая найдётся), которая начинается с нуля и
заканчивается этим числом, причём каждый следующий член последовательности
либо равен половине предыдущего, либо в сумме с предыдущим составляет 1.
Среди всех чисел вида
m/2
50, где
m = 1, 3, 5,..., 2
50 − 1, найти число с наибольшей "сложностью".
|
|
Сложность: 4 Классы: 8,9,10
|
Даны 1985 множеств, каждое из которых состоит из 45 элементов, причём
объединение любых двух множеств содержит ровно 89 элементов.
Сколько элементов содержит объединение всех этих 1985 множеств?
Страница:
<< 1 2 3
4 >> [Всего задач: 16]