ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В маленьком городе только одна трамвайная линия. Она кольцевая, и трамваи ходят по ней в обоих направлениях. На кольце есть остановки Цирк, Парк и Зоопарк. От Парка до Зоопарка путь на трамвае через Цирк втрое длиннее, чем не через Цирк. От Цирка до Зоопарка путь через Парк вдвое короче, чем не через Парк. Какой путь от Парка до Цирка – через Зоопарк или не через Зоопарк – короче и во сколько раз?

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 14]      



Задача 86508  (#1.1)

Темы:   [ Математическая логика (прочее) ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 2+
Классы: 8,9

Решая задачу:   "Какое значение принимает выражение  x2000 + x1999 + x1998 + 1000x1000 + 1000x999 + 1000x998 + 2000x³ + 2000x² + 2000x + 3000
(x – действительное число), если  x² + x + 1 = 0?",  Вася получил ответ 3000. Прав ли Вася?

Прислать комментарий     Решение

Задача 86509  (#1.2)

Темы:   [ Подобные фигуры ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2
Классы: 8,9

Являются ли подобными два прямоугольника: картина в рамке и картина без рамки, если ширина рамки всюду одинакова (см. рис.)?

Прислать комментарий     Решение

Задача 86510  (#1.3)

Темы:   [ Десятичная система счисления ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 7,8,9

Дано число: 123456789101112... . Какая цифра стоит на 2000-м месте?
Прислать комментарий     Решение


Задача 86511  (#2.1)

Темы:   [ Исследование квадратного трехчлена ]
[ Методы решения задач с параметром ]
Сложность: 3-
Классы: 8,9,10,11

Квадратный трехчлен  y = ax² + bx + c  не имеет корней и  а + b + c > 0.  Найдите знак коэффициента с.

Прислать комментарий     Решение

Задача 86512  (#2.2)

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Неравенство треугольника (прочее) ]
[ Периметр треугольника ]
Сложность: 2+
Классы: 8,9

Биссектриса треугольника делит одну из его сторон на отрезки 3 см и 5 см. В каких границах изменяется периметр треугольника?

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 14]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .