Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]
Внутри квадрата ABCD выбрана такая точка M, что
∠MAC = ∠MCD = α. Найдите величину угла ABM.
В треугольнике ABC проведена медиана AM.
Может ли радиус вписанной окружности треугольника ABM быть ровно в два раза больше радиуса вписанной окружности треугольника ACM?
Известно, что в трапецию можно вписать окружность.
Докажите, что окружности, построенные на боковых сторонах трапеции как на диаметрах, касаются друг друга.
|
|
Сложность: 4- Классы: 8,9,10
|
а) Даны две одинаковые шестерёнки с 14 зубьями каждая. Их наложили друг на друга так, что зубья совпали (так что проекция на плоскость выглядит как одна шестерёнка). После этого четыре пары совпадающих зубьев выпилили. Всегда ли можно повернуть эти шестерёнки друг относительно друга так, чтобы проекция на плоскость выглядела как одна целая шестерёнка? (Шестерёнки можно поворачивать, но нельзя переворачивать.)
б) Тот же вопрос про две шестерёнки с 13 зубьями, из которых выпилили по 4 зуба.
|
|
Сложность: 4- Классы: 8,9,10
|
Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Разрешается проделывать следующее преобразование (перестройку): взяв пару треугольников ABD и BCD с общей стороной, заменить их на треугольники ABC и ACD. Пусть P(n) – наименьшее число перестроек, за которое можно перевести каждое разбиение в любое. Докажите, что
а) P(n) ≥ n – 3;
б) P(n) ≤ 2n – 7;
в) P(n) ≤ 2n – 10 при n ≥ 13.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]