Страница:
<< 2 3 4 5 6 7
8 >> [Всего задач: 40]
|
|
Сложность: 4 Классы: 9,10,11
|
Отмечено 100 точек – N вершин выпуклого N-угольника и 100 – N точек внутри этого N-угольника. Точки как-то обозначены, независимо от того, какие являются вершинами N-угольника, а какие лежат внутри. Известно, что никакие три точки не лежат на одной прямой, а никакие четыре – на двух параллельных прямых. Разрешается задавать вопросы типа: чему равна площадь треугольника XYZ (X, Y, Z – из числа отмеченных точек). Докажите, что 300 вопросов достаточно, чтобы выяснить, какие точки являются вершинами N-угольника, и чтобы найти его площадь.
|
|
Сложность: 4 Классы: 8,9,10
|
В прямоугольной таблице m строк и n столбцов (m < n). В некоторых клетках таблицы стоят звёздочки, так что в каждом столбце стоит хотя бы одна звёздочка. Докажите, что существует хотя бы одна такая звёздочка, что в одной строке с нею находится больше звёздочек, чем с нею в одном столбце.
Дана 61 монета одинакового внешнего вида. Известно, что две из них –
фальшивые, что все настоящие одинакового веса, что фальшивые – тоже одинакового веса, отличающегося от веса настоящих монет. Но неизвестно, в какую сторону отличаются веса фальшивых монет от настоящих. Как можно это узнать с помощью трёх взвешиваний на двухчашечных весах без гирь? (Определить фальшивые монеты не требуется.)
|
|
Сложность: 4 Классы: 8,9,10
|
Сколько существует таких пар натуральных чисел (m, n), каждое из которых не превышает 1000, что
|
|
Сложность: 4 Классы: 10,11
|
Какое минимальное количество точек на поверхности
а) додекаэдра,
б) икосаэдра
надо отметить, чтобы на каждой грани была хотя бы одна отмеченная точка?
Страница:
<< 2 3 4 5 6 7
8 >> [Всего задач: 40]