Страница: 1 [Всего задач: 4]
Задача
98360
(#1)
|
|
Сложность: 3 Классы: 6,7,8
|
а) Каким наименьшим числом прямых можно разрезать все клетки доски 3×3? (Чтобы клетка была разрезана, прямая должна проходить через внутреннюю точку этой клетки.)
б) Та же задача для доски 4×4.
a и b – две данные стороны треугольника.
Как подобрать третью сторону c так, чтобы точки касания вписанной и вневписанной окружностей с этой стороной делили её на три равных отрезка?
При каких a и b такая сторона существует?
(Рассматривается вневписанная окружность, касающаяся стороны c и продолжений сторон a и b.)
Задача
98369
(#3)
|
|
Сложность: 3 Классы: 7,8,9
|
Докажите, что уравнение xy(x – y) + yz(y – z) + zx(z – x) = 6 имеет бесконечно много решений в целых числах.
Задача
98370
(#4)
|
|
Сложность: 3+ Классы: 7,8,9
|
На клетчатой доске 5×5 расставили максимальное число шахматных коней так, чтобы они не били друг друга.
Докажите, что такая расстановка единственна.
Страница: 1 [Всего задач: 4]