ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 98]      



Задача 102991

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
[ Признаки делимости на 3 и 9 ]
Сложность: 2
Классы: 5,6

а) Может ли число, составленное только из четвёрок, делиться на число, составленное только из троек?
б) А наоборот?

Прислать комментарий     Решение

Задача 102998

Темы:   [ Ребусы ]
[ Делимость чисел. Общие свойства ]
Сложность: 2
Классы: 5,6,7

Может ли быть верным равенство  К×О×Т = У×Ч×Е×Н×Ы×Й,  если в него вместо букв подставить цифры от 1 до 9? Разным буквам соответствуют разные цифры.

Прислать комментарий     Решение

Задача 102999

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Сочетания и размещения ]
Сложность: 2
Классы: 5,6,7

  – У меня зазвонил телефон.
  – Кто говорит?
  – Слон.
  А потом позвонил Крокодил, а потом позвонили Зайчатки, а потом позвонили Мартышки, а потом позвонил Медведь, а потом позвонили Цапли... Итак, у Слона, Крокодила, Зайчаток, Мартышек, Медведя, Цапель и у меня установлены телефоны. Каждые два телефонных аппарата соединены проводом. Cколько для этого понадобилось проводов?

Прислать комментарий     Решение

Задача 103002

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 5,6

В комнате находятся 85 воздушных шаров — красных и синих. Известно, что: 1) по крайней мере один из шаров красный, 2) из каждой произвольно выбранной пары шаров по крайней мере один синий. Сколько в комнате красных шаров?
Прислать комментарий     Решение


Задача 103004

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
[ Признаки делимости на 3 и 9 ]
Сложность: 2
Классы: 5,6,7

Припишите к числу 10 справа и слева одну и ту же цифру так, чтобы полученное четырёхзначное число делилось на 12.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 98]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .