Страница:
<< 1 2 3 4 5 [Всего задач: 23]
|
|
Сложность: 5 Классы: 9,10,11
|
Можно ли в пространстве составить замкнутую цепочку из 61 одинаковых
согласованно вращающихся шестерёнок так, чтобы углы между сцепленными
шестерёнками были не меньше 150°? При этом:
для простоты шестёренки считаются кругами;
шестерёнки сцеплены, если соответствующие окружности в точке соприкосновения имеют общую касательную;
угол между сцепленными шестерёнками – это угол между радиусами
их окружностей, проведёнными в точку касания;
первая шестерёнка должна быть сцеплена со второй, вторая – с
третьей, и т. д., 61-я – с первой, а другие пары шестерёнок не должны иметь общих точек.
|
|
Сложность: 5+ Классы: 8,9,10,11
|
На пол положили правильный треугольник
ABC, выпиленный из фанеры. В
пол вбили три гвоздя (по одному вплотную к каждой стороне
треугольника) так, что треугольник невозможно повернуть, не отрывая от
пола. Первый гвоздь делит сторону
AB в отношении 1 : 3, считая от вершины
A, второй делит сторону
BC в отношении 2 : 1, считая от вершины
B.
В каком отношении делит сторону
AC третий гвоздь?
|
|
Сложность: 5+ Классы: 8,9,10
|
Натуральные числа от 1 до n расставляются в ряд в произвольном порядке. Расстановка называется плохой, если в ней можно отметить 10 чисел (не обязательно стоящих подряд), идущих в порядке убывания. Остальные расстановки называются хорошими. Докажите, что количество хороших расстановок не превосходит 81n.
Страница:
<< 1 2 3 4 5 [Всего задач: 23]