ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 4556]      



Задача 30324

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 5,6,7

В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

Прислать комментарий     Решение

Задача 30325

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 2
Классы: 6,7

Сколькими способами можно сделать трёхцветный флаг с горизонтальными полосами одинаковой ширины, если имеется материя шести различных цветов?

Прислать комментарий     Решение

Задача 30328

Темы:   [ Перестановки и подстановки (прочее) ]
[ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 2
Классы: 5,6,7

Сколько существует трёхзначных чисел, в записи которых цифры 1, 2, 3 встречаются ровно по одному разу?

Прислать комментарий     Решение

Задача 30340

Темы:   [ Классическая комбинаторика (прочее) ]
[ Правило произведения ]
Сложность: 2
Классы: 6,7

У двух начинающих коллекционеров по 20 марок и по 10 значков. Честным обменом называется обмен одной марки на одну марку или одного значка на один значок. Сколькими способами коллекционеры могут осуществить честный обмен?

Прислать комментарий     Решение

Задача 30344

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
[ Классическая комбинаторика (прочее) ]
Сложность: 2
Классы: 6,7

На полке стоят пять книг. Сколькими способами можно выложить в стопку несколько из них (стопка может состоять и из одной книги)?

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 4556]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .