ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Заданы N различных точек плоскости и натуральное число M. Требуется найти максимальный по площади невырожденный M-угольник без самопересечений и самокасаний, вершинами которого являются некоторые из этих N точек.

Входные данные

В первой строке входного файла через пробел записаны два целых числа M и N (3 ≤ M ≤ N ≤ 10). Во второй строке перечислены N точек, каждая из которых задана парой своих координат. Координаты являются вещественными числами и разделяются пробелом.

Выходные данные

В первую строку выходного файла нужно вывести площадь искомого M-угольника, а во вторую – номера точек, являющихся вершинами этого M-угольника (в порядке обхода по или против часовой стрелки). Номера точек разделяются пробелом. Если вариантов решений несколько, то достаточно выдать любой из них. Если же ни один M-угольник с указанными свойствами построить невозможно, то выходной файл должен содержать единственное число 0.

Пример входного файла

3 4
0 0 0 1 1 0 1 1

Пример выходного файла

0.5
1 2 3

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 8040]      



Задача 67328

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 6,7

В спорткомплексе 99 шкафчиков с номерами от 01 до 99. На браслете с ключом цифры написаны по образцу на рисунке:

По браслету непонятно, где низ, а где верх, и поэтому иногда нельзя однозначно определить номер своего шкафчика (например, браслеты, соответствующие номерам 10 и 01, выглядят одинаково). Мише выдали один из ключей. В скольких случаях из 99 он, посмотрев на браслет, не сможет однозначно определить номер своего шкафчика?
Прислать комментарий     Решение


Задача 76414

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Средние величины ]
Сложность: 2
Классы: 8,9

Определить отношение двух чисел, если отношение их среднего арифметического к среднему геометрическому равно 25 : 24.

Прислать комментарий     Решение

Задача 76481

Тема:   [ Четырехугольники (прочее) ]
Сложность: 2
Классы: 8,9

Дан четырёхугольник; A, B, C, D — последовательные середины его сторон, P, Q — середины диагоналей. Доказать, что треугольник BCP равен треугольнику ADQ.
Прислать комментарий     Решение


Задача 77967

Темы:   [ Трапеции (прочее) ]
[ Геометрические неравенства (прочее) ]
Сложность: 2
Классы: 8

Доказать, что в трапеции сумма углов при меньшем основании больше, чем при большем.
Прислать комментарий     Решение


Задача 77973

Темы:   [ Тригонометрические уравнения ]
[ Геометрические Места Точек ]
Сложность: 2
Классы: 9,10,11

Найти геометрическое место точек, координаты которых (x, y) удовлетворяют соотношению sin(x+y) = 0.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 8040]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .