ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны 1002 различных числа, не превосходящих 2000. Докажите, что из них можно выбрать три таких числа, что сумма двух из них равна третьему. Останется ли это утверждение справедливым, если число 1002 заменить на 1001?

   Решение

Задачи

Страница: << 179 180 181 182 183 184 185 >> [Всего задач: 7526]      



Задача 35321

Тема:   [ Разные задачи на разрезания ]
Сложность: 3
Классы: 8,9,10

Внутри круга нарисована точка. Покажите, что можно разрезать круг на две части так, чтобы из них можно было составить круг, в котором отмеченная точка являлась бы центром.
Прислать комментарий     Решение


Задача 35324

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Каково минимальное целое число вида 111...11, делящееся на 333...33 (100 троек)?

Прислать комментарий     Решение

Задача 35325

Темы:   [ Последовательности (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Можно ли выписать в ряд десять чисел так, чтобы сумма любых пяти чисел подряд была бы положительна, а сумма любых семи подряд отрицательна?
Прислать комментарий     Решение


Задача 35354

Темы:   [ Арифметика остатков (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 8,9

Может ли сумма  1 + 2 + 3 + ... + (n – 1) + n  при каком-нибудь натуральном n оканчиваться цифрой 7?

Прислать комментарий     Решение

Задача 35358

Тема:   [ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Решить в целых числах уравнения   a)  1/a + 1/b = 1/7;   б)  1/a + 1/b = 1/25.

Прислать комментарий     Решение

Страница: << 179 180 181 182 183 184 185 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .