Страница:
<< 123 124 125 126 127 128 129 [Всего задач: 644]
[Индекс пересечения]
|
|
Сложность: 4+ Классы: 8,9,10
|
а) Докажите, что число точек пересечения двух замкнутых ломаных на плоскости, находящихся в общем положении, чётно.
б) Верно ли это для замкнутых ломаных, нарисованных на поверхности оконной рамы?
|
|
Сложность: 4+ Классы: 7,8,9
|
Найдется ли такое n, при котором ? А больше 1000?
|
|
Сложность: 4+ Классы: 7,8,9
|
Среди 300 учеников одной математической школы некоторые путают лево и право, некоторые не путают, а некоторые делают все наоборот, чем им говорят. Первого сентября всех учеников выстроили в одну шеренгу (плечом к плечу) и скомандовали "нале-во!" По этой команде все одновременно повернулись на 90°, кто налево, а кто направо. Ровно через секунду каждый, кто оказался лицом к лицу к соседу, понимает, что не прав, и поворачивается кругом (на 180°). Как долго это может продолжаться?
|
|
Сложность: 5 Классы: 7,8,9,10
|
а) Наконец, у Снежной Королевы появились все квадраты с целыми сторонами, но каждый в единственном экземпляре. Королева пообещала Каю, что он станет мудрым, если сможет из каких-то имеющихся квадратов сложить прямоугольник. Сможет ли он это сделать?
б) Отдыхая, Кай стал заполнять стеклянный аквариум ледяными кубиками, которые лежали рядом. Кубики были самых разных размеров, но среди них не было двух одинаковых. Сможет ли Кай заполнить аквариум кубиками целиком?
Страница:
<< 123 124 125 126 127 128 129 [Всего задач: 644]