Страница: << 1 2 [Всего задач: 8]
Задача
110082
(#01.4.8.6)
|
|
Сложность: 4- Классы: 7,8,9
|
Натуральное число n назовём хорошим, если каждое из чисел n, n + 1, n + 2 и n + 3 делится на сумму своих цифр. (Например, n = 60398 – хорошее.)
Обязательно ли предпоследней цифрой хорошего числа, оканчивающегося восьмеркой, будет девятка?
Задача
110083
(#01.4.8.7)
|
|
Сложность: 3+ Классы: 7,8,9
|
Можно ли клетки доски 5×5 покрасить в 4 цвета так, чтобы клетки, стоящие на пересечении любых двух строк и любых двух столбцов, были покрашены не менее чем в три цвета?
Задача
110084
(#01.4.8.8)
|
|
Сложность: 4 Классы: 8,9,10
|
Докажите, что любой треугольник можно разрезать не более чем на три части, из которых складывается равнобедренный треугольник.
Страница: << 1 2 [Всего задач: 8]