Страница:
<< 1 2 [Всего задач: 8]
Задача
111783
(#07.4.9.6)
|
|
Сложность: 4- Классы: 8,9
|
На стороне
BC треугольника
ABC
выбрана произвольная точка
D . В треугольники
ABD и
ACD
вписаны окружности с центрами
K и
L соответственно.
Докажите, что описанные
окружности треугольников
BKD и
CLD вторично пересекаются
на фиксированной окружности.
Задача
111784
(#07.4.9.7)
|
|
Сложность: 4 Классы: 8,9,10
|
Бесконечная возрастающая арифметическая прогрессия, состоящая из натуральных чисел, содержит точный куб натурального числа.
Докажите, что она содержит и точный куб, не являющийся точным квадратом.
Задача
111785
(#07.4.9.8)
|
|
Сложность: 5 Классы: 9,10,11
|
Среди натуральных чисел от 1 до 1200 выбрали 372 различных числа так,
что никакие два из них не различаются на 4, 5 или 9. Докажите,
что число 600 является одним из выбранных.
Страница:
<< 1 2 [Всего задач: 8]