ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 111775  (#07.4.10.6)

Темы:   [ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 9,10,11

Точка D на стороне BC треугольника ABC такова, что радиусы вписанных окружностей треугольников ABD и ACD равны. Докажите, что радиусы окружностей, вневписанных в треугольники ABD и ACD , касающихся соответственно отрезков BD и CD , также равны.
Прислать комментарий     Решение


Задача 111776  (#07.4.10.7)

Темы:   [ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4
Классы: 8,9,10

Автор: Астахов В.

Дано натуральное число  n > 6.  Рассматриваются натуральные числа, лежащие в промежутке  (n(n – 1), n²)  и взаимно простые с n(n – 1).
Докажите, что наибольший общий делитель всех таких чисел равен 1.

Прислать комментарий     Решение

Задача 111777  (#07.4.10.8)

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Индукция (прочее) ]
[ Процессы и операции ]
Сложность: 4
Классы: 8,9,10

В клетках таблицы 15×15 изначально записаны нули. За один ход разрешается выбрать любой её столбец или любую строку, стереть записанные там числа и записать туда все числа от 1 до 15 в произвольном порядке – по одному в каждую клетку. Какую максимальную сумму чисел в таблице можно получить такими ходами?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .