ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 69]      



Задача 116894

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 10,11

Автор: Фольклор

Существуют ли четыре последовательных натуральных числа, каждое из которых можно представить в виде суммы квадратов двух натуральных чисел?

Прислать комментарий     Решение

Задача 116919

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3-
Классы: 8,9

Автор: Фольклор

Ваня пошел с папой в тир. Уговор был такой: Ване даются 10 патронов, и за каждое попадание в цель он получает ещё три патрона. Ваня сделал 14 выстрелов и ровно в половине из них он попал в цель. Сколько патронов осталось у Вани?

Прислать комментарий     Решение

Задача 116920

Темы:   [ Разрезания (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

Автор: Фольклор

На клетчатой бумаге нарисован квадрат 7×7. Покажите, как разрезать его по линиям сетки на шесть частей и сложить из них три квадрата.

Прислать комментарий     Решение

Задача 116921

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3-
Классы: 8,9

Автор: Фольклор

В классе – 17 человек. Известно, что среди любых десяти есть хотя бы одна девочка, а мальчиков больше, чем девочек. Сколько девочек в этом классе?

Прислать комментарий     Решение

Задача 116922

Темы:   [ Тождественные преобразования ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3-
Классы: 8,9

Автор: Фольклор

Известно, что числа а, b, c и d – целые и  .  Может ли выполняться равенство  аbcd = 2012?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .