ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 69]      



Задача 116798

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Две окружности пересекаются в точках P и Q. Прямая, пересекающая отрезок PQ, последовательно пересекает эти окружности в точках A, B, C и D.
Докажите, что  ∠APB = ∠CQD.

Прислать комментарий     Решение

Задача 116799

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

В круговом шахматном турнире участвует 9 мальчиков и 3 девочки (каждый играет с каждым один раз, победа – 1 очко; ничья – 0,5; поражение – 0). Может ли в итоге оказаться, что сумма очков, набранных всеми мальчиками, будет равна сумме очков, набранных всеми девочками?

Прислать комментарий     Решение

Задача 116800

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Докажите, что если  а > 0,  b > 0,  c > 0  и  аb + bc + ca ≥ 12,  то  a + b + c ≥ 6.

Прислать комментарий     Решение

Задача 116803

Темы:   [ Исследование квадратного трехчлена ]
[ Средние величины ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Известно, что модули корней каждого из двух квадратных трёхчленов  x² + ax + b  и  x² + cx + d  меньше 10. Может ли трёхчлен    иметь корни, модули которых не меньше 10?

Прислать комментарий     Решение

Задача 116804

Темы:   [ Неравенства для углов треугольника ]
[ Против большей стороны лежит больший угол ]
[ Биссектриса угла (ГМТ) ]
[ Свойства биссектрис, конкуррентность ]
[ Углы между биссектрисами ]
Сложность: 3
Классы: 8,9,10

В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что  ∠CED > 45°.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .