ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 64761  (#9.1)

Темы:   [ Арифметика остатков (прочее) ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10

По кругу расставлены 99 натуральных чисел. Известно, что каждые два соседних числа отличаются или на 1, или на 2, или в два раза.
Докажите, что хотя бы одно из этих чисел делится на 3.

Прислать комментарий     Решение

Задача 64762  (#9.2)

Темы:   [ Разложение на множители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Серёжа выбрал два различных натуральных числа a и b. Он записал в тетрадь четыре числа:  a,  a + 2,  b и  b + 2.  Затем он выписал на доску все шесть попарных произведений чисел из тетради. Какое наибольшее количество точных квадратов может быть среди чисел на доске?

Прислать комментарий     Решение

Задача 64763  (#9.3)

Темы:   [ Выпуклые многоугольники ]
[ Индукция в геометрии ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 4
Классы: 8,9,10

В выпуклом n-угольнике проведено несколько диагоналей. Проведённая диагональ называется хорошей, если она пересекается (по внутренним точкам) ровно с одной из других проведённых диагоналей. Найдите наибольшее возможное количество хороших диагоналей.

Прислать комментарий     Решение

Задача 64764  (#9.4)

Темы:   [ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Шмаров В.

Точка M – середина стороны AC остроугольного треугольника ABC, в котором  AB > BC.  Касательные к описанной окружности Ω треугольника ABC, проведённые в точках A и C, пересекаются в точке P. Отрезки BP и AC пересекаются в точке S. Пусть AD – высота треугольника BP. Описанная окружность ω треугольника CSD второй раз пересекает окружность Ω в точке K. Докажите, что  ∠CKM = 90°.

Прислать комментарий     Решение

Задача 64765  (#9.5)

Темы:   [ Простые числа и их свойства ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10

К натуральному числу N прибавили наибольший его делитель, меньший N, и получили степень десятки. Найдите все такие N.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .